Time: 3 hours Total marks 75

Note: All Questions are Compulsory. Figures to the right indicate full marks. Draw diagrams wherever required. Use of Scientific calculator is permitted

			K
Q.I		Choose the appropriate option for following multiple choice	2 0
		questions Q Q Q Q	
	1	Use of pharmacokinetic principles to the design, conduct and interpretation of drug	1
		safety evaluation studies	(
	a	Population pharmacokinetics	4
	b	Clinical pharmacokinetics	77
	c	Therapeutic drug monitoring	
	d	Toxicokinetics	
		A	
	2	Absorption of Vitamin B12 from small intestine is brought about by	1
	a	Active transport 4 4 4 4	1
	b (Passive transport	×
	c	Carrier mediated transport	
	d A	Ion pair transport	
	4	26 40 47 26 46 46	
	3	BCS Class II drug molecule has	1
4	a	Low solubility and high permeability	ام.
(Z)	b	High solubility and high permeability	X)
20	c Δ	Low solubility and low permeability	ř
κ)	d 💎	High solubility and low permeability	
	,96	16, 18, 18, 16, 16, 16, 16,	
	4	Following route of drug administration will exhibit maximum bioavailability	1
Δ	a	Oral 40 40 40 40 40 40 40 40 40 40 40 40 40	
DO.	b	Rectal	
10'	c \triangle	Intravenous 10 10 10 10 10 10 10 10 10 10 10 10 10	
-	d o	Topical	
	40'	76, 76, 76, 76, 76,	
	5	involves adsorptive uptake of solid particulate	1
,0	a	Pinocytosis A A A A A A A A A A A A A A A A A A	
	b	Phagocytosis	
4	c e	Ion pair transport	
×	d	Diffusion	
	A	260 400 400 400	
	6×	Apparent volume of distribution is described as	1
4	a	correlation between dose administered and plasma concentration	
(T)	b	correlation between dose eliminated and plasma concentration	
200	c 4	correlation between rate of elimination and plasma concentration	
×)	d	correlation between rate of absorption and plasma concentration	
	7,30		
		Site II of Human Serum Albumin is referred to as binding site	1
	a	Warfarin 46	
OB	b	Diazepam	
40	$\frac{c}{1}$	Tamoxifen	
7	a P	Digitoxin	
	040	Following is active process of unicers execution	1
	0	Following is active process of urinary excretion	1
6	8a	Glomerular filtration	

Paper / Subject Code: 87614 / Biopharmaceutics and Pharmacokinetics

		7
b	Tubular secretion	L
c	Biliary secretion	
d	Tubular filtration	
9	Hepatic clearance is given by:	1
a	Elimination rate X plasma drug concentration	20
b	Hepatic excretion rate/ plasma drug concentration)
	Plasma drug concentration / Hepatic excretion rate	
C		
d	Elimination rate / plasma drug concentration	
	$\frac{1}{4}$	
10	Phase II reaction involves following reaction	10
a	Oxidation 4	70
b	Conjugation	1
c	Reduction	
d	Hydrolysis	
u	Tryulotysis 6	
1.1	T10775: 1 : 54	1.
11	USP Dissolution Apparatus IV is called as	I
a	Paddle over disc	77
b	Paddle O A	K
c ,%	Basket Ab	
d N	Flow through Cell	
7		
10	Following is the pharmacodynamic method for studying bioavailability	1 -
(GZ		1
a	Plasma level time studies	90
b	Urinary excretion studies	5
c 4	Stool excretion studies	
d	Therapeutic response	
30'	16, 74, 60, 12, 12,	
.13	Comparison of AUC of drug given by oral route of administration with AUC of	1
	drug given by intravenous route of administration is called as	
× a	Biopharmaceutics	
b A	Bioequivalence	
	*	
C X	Absolute bioavailability	
d_6	Relative bioavailability	
(Z		
<u>4</u> 4	The steady state concentration Css for IV infusion is given by	1
? a	Css= Infusion Rate- Total Systemic Clearance	
b	Css = Infusion Rate / Total Systemic Clearance	
c S	Css = Total Systemic Clearance/Infusion Rate	
d 🐼	Css = Infusion Rate x Total Systemic Clearance	
u	Css - initision Rate x Total Systemic Cicarance	
P	This of alconomic given by	1
7(1)		1
⇒ a	mg / hr	
b (mL/hr	
c	mg/L*hr	
d o	hr/mL	
1400	T	
16	Wagner Nelson method is used to determine	1
40		•
× a	K _E	
b	K _A	
c	AUC	
d (8)	CL_T	
7		
17	In the two-compartment open model IV bolus, the initial rapid decline in the drug	1
50	concentration is due to	
× ′	Z 19X	

Paper / Subject Code: 87614 / Biopharmaceutics and Pharmacokinetics

a	Absorption	2)/X
b	Distribution 4 4 4	,
c	Metabolism	
d	Elimination	
18	In case of Multi compartment model, elimination is indicated by	1
a	α	100
b	β β A° A° A° A° A° A°	9
c		
d	γ Αν 200 Αν Αν 200 Αν	
	Sk ck, Ck, Ok ck, Ck,	,0
19	In Michaelis Menton equation when Km>>C	10
a	Rate of process is zero order	Er
b	Rate of process is first order	5
c	Rate of process is half the maximum rate	
d	Rate of process is double the maximum rate	
	Sh the Sh Sh the Sh	
20	Self induction of enzyme in case of carbamazepine causesin half	1
- (life of drug	0/2
a	decrease 4 4 4 4 4	5
b	increase	
C	keeps constant	
(d)	decrease followed by increase	(
X		290
Q.II a	Attempt any Two.	2x10
1 a 4	A single IV bolus injection containing 500 mg of an antibiotic is given to an adult	Y
(T)	patient (weight = 55 kg). The apparent volume of distribution is 0.1 L/kg and the	
1,20	elimination half-life is 0.75 hour. Assuming the drug is eliminated by first-order	
(2)	kinetics and described by one-compartment model, calculate the following	
	a. Co b. Elimination rate constant and AUC	1
R	c. The amount of drug in the body 4 hours after the dose is given	1 2
4	d. The time for the drug to decline to $0.5\mu g/ml$ the minimum inhibitory	2
(8)	concentration for streptococci	2
1-h	What is apparent volume of distribution? Derive the equation for apparent volume	3
	of distribution	3
2	Describe the concept of two compartment model and derive various	10
	pharmacokinetic parameters following two compartment open model IV bolus	10
50	administration of drug.	
3	Explain the concept of drug distribution and give a detailed note physicochemical	10
N. T.	properties of the drug affecting distribution with suitable examples	
16	(4) (4) (4) (4) (6) (4) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	
Q.II b	Attempt any seven.	7x5
1 16	Explain effect of any two dosage form related factors with suitable examples	5
	affecting drug absorption	
3	Explain the mechanism of active transport of drug with suitable examples	5
3	Justify with reasons, human serum albumin considered a versatile protein for drug	5
(4)	binding. Enlist various drug binding sites on human serum albumin	
4 5 &	Explain the concept of IVIVC and discuss its significance.	5
5	Enlist the methods used for assessment of bioavailability of drug. Explain any one	5
C OX	method in detail.	_
0,16	What are the causes on non linearity in absorption and metabolism of drug?	5
	Explain with suitable examples.	_
0,	Explain the determination of absorption rate constant based on method of feathering following one compartment kinetics.	5
()	reamering tonowing one compartment kinetics.	